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Abstract
For one-dimensional Schrödinger quantum systems, the correlation expression
S(x, τ, a) ≡ �∗(x − τ

2

/
a
)
�
(
x + τ

2

)
satisfies a fourth-order linear differential

equation with regard to x. This generalizes the result previously derived by
Handy (2001 J. Phys. A: Math. Gen. 34 L271), and Handy and Wang (2001
J. Phys. A: Math. Gen. 34 8297), with regard to S(x, 0, 1). We are then
able to incorporate this within a generalized Wigner transform representation,
through the use of scalets (Handy C R and Brooks H A 2001 J. Phys. A: Math.
Gen. 34 3577). Energy quantization is achieved through a moment problem
positivity analysis (focusing on the moments of the probability density, |�|2)
at a = 1, τ = 0. The wavefunction, � , is then generated through a multiscale
analysis proceeding from the unity scale, extended into the zero scale limit.
The power moments, µp = ∫

dx xp�(x), can be generated through a similar
procedure. We present the general formalism and apply it to the (ix)3 potential.

PACS numbers: 02.30.Hq, 02.60.Lj, 03.65.−w

1. Introduction

In a series of recent works, Handy (2001a, 2001b) and Handy and Wang (2001) showed
how the one-dimensional Schrödinger equation, for arbitrary (complex) potential (V (x) =
VR(x) + iVI (x)), could be transformed into a fourth-order, linear, ordinary differential equation
for the probability density, S(x) ≡ |�(x)|2, of the form

− 1

VI − EI

S(4)(x) −
(

1

VI − EI

)′
S(3)(x) + 4

(
VR − ER

VI − EI

)
S(2)(x) +

[
4

(
VR − ER

VI − EI

)′

+ 2
V ′

R

VI − EI

]
S(1)(x) +

(
4(VI − EI) + 2

(
V ′

R

VI − EI

)′)
S(x) = 0. (1)

Within this representation, the discrete states are uniquely positive and bounded, allowing the
implementation of the eigenvalue moment method (EMM), as developed by Handy et al (1988),
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which quantizes through the generation of converging lower and upper bounds to the desired
(complex) eigenenergy, E = ER + iEI .

In general, moment-based quantization methods are capable of producing high-accuracy
results, of relevance to strong coupling/singular perturbation type (linear) systems, including
those with multiple singular regions (i.e. turning points, etc). The EMM does this through
the generation of tightly converging eigenenergy bounds; however, the wavefunction cannot
be recovered. Another very successful method, the multiscale reference function (MRF)
approach, can generate impressively high-accuracy results (Tymczak et al 1998a, 1998b,
Handy et al 2001). However, it may be too slowly convergent in recovering the local
structure of the wavefunction. Our principal objective in this work is to show how a positivity
representation, combined with EMM analysis, can be used to generalize the formalism in
equation (1) so as to recover the wavefunction. Our formalism also has a strong overlap
with the Wigner transform representation. We comment on this below, although we will not
develop this relationship, fully, here.

The EMM approach works within a moment equation representation for equation (1),
involving the power moments of the probability density,

Uq ≡
∫

dx xqS(x). (2)

In principle, we are interested in generating both the wavefunction, �(x), and its power
moments,

µq =
∫ +∞

−∞
dx xq�(x) (3)

from knowledge of the set of moments,
{
Uq ≡ ∫

dx xq |�(x)|2}.
Consider the correlation type, wavefunction product:

S(x, τ, α) = �∗
(
α
(
x − τ

2

))
�
(
x +

τ

2

)
(4)

where α > 0 corresponds to an inverse scale, α ≡ 1
a

. So far as our ultimate objective is to
analyse these structures with regard to real α values, the above definition is suitable; however,
questions of analyticity with respect to α should be made with regard to S∗(x, τ, α), which
will generally admit a complex extension into the α-complex plane.

Two important results follow. The first is that S(x, τ, α) satisfies a linear differential
equation with respect to the x dependence, thereby generalizing equation (1). Because of this,
the corresponding power moments,

Uq(τ, α) =
∫ +∞

−∞
dx xqS(x, τ, α) (5)

admit a recursive, linear, moment equation, with respect to the q-index, of order 1 + ms (which
is problem dependent). This takes on the form

Uq(τ, α) =
ms∑
�=0

Mq,�(τ, α,E)U�(τ, α) q � 0 (6)

where the energy-dependent coefficients, Mq,�(τ, α,E), are known. At each scale value, the
first 1 + ms moments, {U�(τ, α)|0 � � � ms}, otherwise referred to as the missing moments,
generate all the other moments.

The second important result is that the first-order derivative of the Uq(τ, α) moments, with
respect to the a-variable (or inverse scale, α), can be expressed as a linear combination of the
missing moments. Thus, one can generate a scalet-like equation (Handy and Brooks 2001),
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corresponding to a finite set of coupled, linear, differential equations (for the missing moments)
of first order in α. The scalet equation is symbolized by

∂αU�1(τ, α) =
ms∑

�2=0

M�1,�2(τ, α,E)U�2 (τ, α) 0 � �1 � ms. (7)

There will also be another scalet equation with respect to the τ direction:

∂τU�1(τ, α) =
ms∑

�2=0

N�1,�2(τ, α,E)U�2(τ, α) 0 � �1 � ms. (8)

Our computational implementation will explicitly derive the form for M and N , for a
particular potential.

At τ = 0, a = 1, the Uq(0, 1) moments become the power moments of the probability
density, as symbolized by equation (2). We can then use EMM to determine the physical
energy and all the U�(0, 1) missing moments (after imposing an appropriate normalization
condition).

Having solved the problem at τ = 0, a = 1, we then use equation (8) to generate the
U�(τ, 1) moments, over any desired τ region. Finally, using these moment configurations,
equation (7) can be integrated either in the zero scale limit, generating the wavefunction, or in
the infinite scale limit, generating the µ�, as detailed below.

In the zero scale limit, provided µ∗
0 ≡ ∫

dx �∗(x) �= 0, we recover the wavefunction
through the asymptotic relation (i.e. translate by x → x + τ

2 , perform the change of variables
y ≡ x

a
and expand the integral

∫
dy a

(
ay + τ

2

)q
�∗(y)�(ay + τ ) in powers of a):

Zero scale limit :




lim
a→0

(
Uq(τ, a)

a
(

τ
2

)q
µ∗

0

)
= �(τ) ∀τ if q = 0 or τ �= 0 if q �= 0

lim
a→0

(
1

a1+q
Uq(0, a)

)
= µ∗

q�(0) if τ = 0.

(9)

Since we implicitly impose a normalization at scale value a = 1, through the EMM procedure,
the above limit expressions only generate the wavefunction up to a uniform factor (i.e. it will
not necessarily be normalized to a global probability of unit value).

We can also generate the wavefunction’s power moments by studying the infinite scale
limit, provided �∗(0) �= 0. That is

lim
a→∞

(
1

�∗(0)
Uq(0, a)

)
= µq. (10)

Again, because of the implicit EMM normalization at scale a = 1, the power moments, µq ,
are generated up to a normalization factor.

The extension of the preceding relations for the cases µ0 = 0 and �(0) = 0 can be
derived, and will be discussed elsewhere.

From the above relations, it is clear that the expression in (4) is equivalent to having the
wavefunction become its own scaling function (i.e. auto-scaling), in the spirit of the analysis
outlined in the work of Handy and Murenzi (1996–1999).

In the recent works by Handy and Murenzi (HM) (Handy and Murenzi 1996, 1997,
1998, 1999), they developed a scalet formalism for generating the wavefunction. This
procedure is identically equivalent to the, multiscale, continuous wavelet theory formalism
of Grossmann and Morlet (1984), although more efficient and accurate, for low-dimensional
systems. Consistent with the wavelet philosophy, scalet analysis defines a procedure for
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efficiently generating the local properties of the wavefunction, based on integrating over all
scale contributions. In this approach, one generates the local properties of a wavefunction,
at a given point, through a systematic multiscale procedure which incorporates all scale
contributions at the same point (within the scalet representation), or alternatively, at all other
points as well (within the wavelet representation). Although such approaches are more
expensive, computationally, than conventional (i.e. numerical integration) methods, it can
offer greater numerical stability and accuracy. We explain this below.

Consider a one-dimensional problem with multi-singular regions (Bender and Orszag
1978). In order to generate the wavefunction, conventionally, one must successfully integrate
through each of the contributing singular regimes. The scalet–wavelet analysis does not
require this. Instead, the wavefunction is generated by systematically determining how the
larger scale structure affects the smaller scale behaviour, recursively. Doing this, at any
desired point, eventually recovers the local structure of the wavefunction, at that point, in
the zero scale limit. In this approach, generation of the wavefunction, at a given point,
is explicitly independent of the wavefunction’s value at any other point. Clearly, although
greater computation is required, this approach is potentially more accurate than conventional
numerical integration schemes, for the reasons stated.

The HM analysis involves the non-local, integral, expressions Uq(τ, a) ≡∫
dx xqS

(
τ−x

a

)
�(x), where the scaling function, S, is a known function (i.e. Gaussians,

etc). For this reason, these are referred to as scalets.
Presently (scalet-Wigner analysis), we are taking the scaling function to be the

wavefunction itself (although, clearly, it is not known a priori).
The HM scalets satisfy a differential scalet equation with regard to the inverse scale

variable, α. The scalet equation is to be regarded as an initial value problem, where
specification of the starting scale configuration, Uq(τ, α = 0), is then used to recover
the wavefunction through relations similar to those in equation (9). The infinite scale,
scalet, configurations, Uq(τ, α = 0), are linearly dependent on the power moments of the
wavefunction, {µq}. These can be obtained, in turn, by various moment quantization methods
such as the multiscale reference function method, or EMM theory (for the ground state case).
Excellent results were always obtained using this procedure, for arbitrary, one-dimensional,
rational fraction potential systems (Handy and Murenzi 1996, 1997, 1998, 1999).

As stated, we wish to duplicate this procedure but in terms of the Uq(τ, α) moments.
In the following sections, we illustrate the above formalism with respect to the important

non-Hermitian potential problem defined by V (x) = ix3. As originally argued by Bender
and Boettcher (2001), and subsequently confirmed by many other investigators such as Dorey
et al (2001a, 2001b), including the relevant works by Handy (2001a, 2001b), Handy and Wang
(2001) and Handy et al (2001), the discrete states have real eigenenergies (E = ER).

For generating the scalet equations in the α and τ directions, we will make use of the
relations (i.e. first translate by x → x + τ

2 ):

∂τUq(τ, α) = q

2
Uq−1(τ, α) + Wq(τ, α) (11)

where

Wq(τ, α) =
∫ +∞

−∞
dx xqJ (x, τ, α) (12)

is the moment of the configuration

J (x, τ, α) ≡ �∗
(
α
(
x − τ

2

))
� ′

(
x +

τ

2

)
. (13)

The Wq moments will be shown to be linearly dependent on the U-scalets. Using this
relationship, we transform equation (11) into a U-scalet differential equation in the τ direction.
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Integration in the τ direction, for α = 1, generates the starting scalet configuration necessary
for recovering the wavefunction (equation (9)) or its moments (equation (10)).

A differential relation ensues in the α direction from the relation (i.e. take x →
x + τ

2 , ∂α�∗(αx) = x
α
∂x�

∗(αx), and then integrate by parts)

∂αUq(τ, α) = − 1

α

∫
dx �∗(αx)∂x

(
x
(
x +

τ

2

)q

�(x + τ )
)

(14)

or

−α∂αUq(τ, α) = (q + 1)Uq(τ, α) − qτ

2
Uq−1(τ, α) + Wq+1(τ, α) − τ

2
Wq(τ, α). (15)

Substituting the linear W–U relationship alluded to the above (and to be derived in the
following sections), we can convert equation (15) into equation (7).

These are the basic relations enabling the present scalet-Wigner formulation.
For completeness, we note that the Wigner transform of the wavefunction, � , is given by

(Wigner 1932, Cohen 1989)

W(x, k) = 1

2π

∫ +∞

−∞
dτ �∗

(
x − τ

2

)
�
(
x +

τ

2

)
e−ikτ . (16)

It defines a two-dimensional phase-space extension of the one-dimensional quantum system,
and has been extensively investigated and exploited, over the last seven decades in the study of
both quantum systems and signal processing. A related expression is the ambiguity function,

A(η, τ ) =
∫ +∞

−∞
du �∗

(
u − τ

2

)
�
(
u +

τ

2

)
eiηu (17)

which is the inverse Fourier transform of the Wigner transform:

A(η, τ ) =
∫ ∫

dx dk exp(iηx + iτk)W(x, k). (18)

Our formalism generalizes the above definition by introducing an explicit scale variable, a:

A(η, τ, a) =
∫ +∞

−∞
du �∗

(
u − τ

2

a

)
�
(
u +

τ

2

)
eiηu. (19)

Within the context of one-dimensional, rational fraction potential, bound state problems,
it is more natural to work with power moments. For bound state configurations, the ambiguity
transform (Wigner transform) will usually be analytic in η (k), therefore the above becomes
the generator of the power moments:

(−i∂η)
qA(η, τ, a)|η=0 = Uq(τ, a). (20)

2. Deriving the S–J moment equations

In order to generate the required scalet equations defined in equations (7) and (8), we must
relate the Uq(τ, α) and Wq(τ, α) moments defined in equations (5) and (12), respectively.
This means that we must transform the Schrödinger equation into a set of differential relations
for the S(x, τ, α) and J (x, τ, α) configurations defined in equations (4) and (13), respectively.
We do this below. The present analysis is modelled after the derivation presented in the work
by Handy and Wang (2001), which solely focuses on these configurations for τ = 0 and
α = 1.

Consider the (rescaled) Schrödinger equation,

−� ′′(x) + V (x)�(x) = E�(x) (21)
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and its counterpart for �(x) ≡ �∗(α(x − τ ))

−�′′(x) + U(x)�(x) = E�(x) (22)

where we assume E is real (if not, its imaginary part can be incorporated within V ), and

U(x) = α2V ∗(α(x − τ )) (23)

E = α2E. (24)

Let us refer to the differential equations in equations (21) and (22) as (I) and (II),
respectively. If we multiply equation (I) by �(x), and equation (II) by �(x), and add/subtract
the resulting expressions, we obtain

−S̃ ′′(x) + 2P̃ (x) + V+(x)S̃(x) = 0 (25)

and

−2J̃ ′(x) + S̃′′(x) + V−(x)S̃(x) = 0 (26)

where S̃(x) ≡ �(x)�(x), P̃ (x) ≡ �′(x)� ′(x), J̃ (x) = �(x)� ′(x) and V±(x) ≡ V (x) ±
U(x) − (E ± E).

If we multiply (I) by �′(x), and (II) by � ′(x), and again take the sum and difference of
the resulting expressions, we obtain

−P̃ ′(x) + [V (x) − E]S̃′(x) − V−(x)J̃ (x) = 0 (27)

and

−W̃(x) + [V (x) − E]S̃′(x) − V+(x)J̃ (x) = 0 (28)

where W̃(x) ≡ �′(x)� ′′(x) − � ′(x)�′′(x).
The last equation serves to define W̃ . The first three (equations (25)–(27)) can be reduced

to one fourth-order differential equation for S̃, as derived below. However, in practice, it
is preferable to generate all moment relations directly from equations (25)–(27), as opposed
to the single fourth-order differential equation for S̃. This is because, depending on the
potential, additional moment constraints can be overlooked, upon performing the successive
differentiations required for deriving the fourth-order equation.

To obtain the fourth-order differential equation for S̃, we first make use of equation (25),
written as P̃ ′(x) = 1

2 (S̃ ′′(x) − V+(x)S̃(x))′. Substituting this in equation (27), dividing the
resulting expression by V−(x) and differentiating again, allows us to substitute for J̃ ′ in
equation (26). Thus, we obtain

∂x

(
1
2 (S̃′′(x) − V+(x)S̃(x))′ − (V (x) − E)S̃′(x)

V−(x)

)
+

1

2
(S̃ ′′(x) + V−(x)S̃(x)) = 0. (29)

The S/J configurations are of particular interest to us, in light of the discussion in the
previous section. They correspond to S(x) ≡ S(x, τ, α) = S̃(x + τ/2), and similarly,
J (x) ≡ J (x, τ, α) = J̃ (x + τ/2), P (x) ≡ P(x, τ, α) = P̃ (x + τ/2). Making this explicit,
and substituting the original expressions, we obtain (we emphasize that the S, P, J

configurations cited below are not to be confused with those appearing in Handy and Wang
(2001)):

−S′′(x) + 2P(x) + V+(x)S(x) = 0 (30)

−2J ′(x) + S′′(x) + V−(x)S(x) = 0 (31)

P ′(x) −
(
V
(
x +

τ

2

)
− E

)
S′(x) + V−(x)J (x) = 0 (32)
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where V±(x) = V±
(
x + τ

2

)
, or

V±(x) ≡ V
(
x +

τ

2

)
± α2V ∗

(
α
(
x − τ

2

))
− E(1 ± α2). (33)

The corresponding fourth-order differential equation for S then becomes

∂x

(
1
2

(
S′′(x) − V+

(
x + τ

2

)
S(x)

)′ − (
V
(
x + τ

2

)− E
)
S′(x)

V−
(
x + τ

2

)
)

+
1

2

(
S′′(x) + V−

(
x +

τ

2

)
S(x)

)
= 0. (34)

One can now use these equations to generate the necessary moment equation for the Uq

moments defined in section 1. It is best to demonstrate this in the context of a specific example,
as discussed in the following section.

3. A pedagogic example: the V (X) = X2 potential

To better appreciate the previous formalism, we examine the case of the harmonic oscillator
potential problem correspondingly defined by

−� ′′(x) + x2�(x) = E�(x). (35)

We limit the following analysis to the ground state case only. Although it is possible to use
EMM to quantize the system, we work directly with the known solution, corresponding to
E = 1,�gr(x) = exp

(− x2

2

)
, and zeroth-order moment µ0 = √

2π . For this case, the scalets
become

Uq(τ, α) =
√

2π

1 + α2
exp

(
−τ 2(1 + α2)

8

)
(−∂β)q exp

(
β2

2(1 + α2)

)
(36)

where β ≡ τ
2 (1 − α2).

Consistent with the results in equation (9), we see that for q = 0, the scalet is

U0(τ, α) =
√

2π
1+α2 exp

(− τ 2

8
4α2

1+α2

)
, which becomes in the zero scale limit (a → 0, α → ∞),

lim
α→∞ U0(τ, α) = µ0

α
�gr(τ ). (37)

For the U1 scalet, we obtain U1(τ, α) = − τ
2

1−α2

1+α2 U0(τ, α). In the zero scale limit, for
τ �= 0, we also recover the wavefunction, as indicated in equation (9).

The scalet equations are now derived. First, we note that for the harmonic oscillator
problem, we have

V±(x) =
(
x +

τ

2

)2
± α2

[
α
(
x − τ

2

)]2
− E(1 ± α2) (38)

or

V±(x) = g±x2 + b±x + c± (39)

where αn|± ≡ 1 ± αn, c± ≡ −Eα2|± + τ 2

4 α4|±, b± ≡ τα4|∓ and g± ≡ α4|±.
The harmonic oscillator representation of equations (30)–(32) yields the necessary

moment equations (obtained by integrating both sides with respect to xq and performing
the necessary integration by parts). First, we use equation (30) to generate the Vq(τ, α) scalets
in terms of the Uq :

Vq(τ, α) = 1
2 (q(q − 1)Uq−2(τ, α) − [c+(τ, α)Uq(τ, α)

+ b+(τ, α)Uq+1(τ, α) + g+(τ, α)Uq+2(τ, α)]). (40)
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From equation (31), one obtains the moment equation

2qWq−1(τ, α) + q(q − 1)Uq−2(τ, α) + c−(τ, α)Uq(τ, α)

+ b−(τ, α)Uq+1(τ, α) + g−(τ, α)Uq+2(τ, α) = 0. (41)

However, we will ignore the constraint defined by the q = 0 relation, since to incorporate
it will complicate the necessary algebra. The legitimacy of this step lies in the fact that
(through EMM, for example) we know the physical energy and starting moment values (for
τ = 0, α = 1). The generation of the scalet configurations, for all desired (τ, α) values, can
proceed regardless of whether we use the q = 0 relation.

Taking q → q + 1 in the previous moment equation, we can solve for Wq(τ, α) in terms
of the U-moment/scalets as well:

Wq(τ, α) = −1

2(q + 1)
(q(q + 1)Uq−1(τ, α) + c−(τ, α)Uq+1(τ, α)

+ b−(τ, α)Uq+2(τ, α) + g−(τ, α)Uq+3(τ, α)). (42)

The final moment equation follows from equation (32):

−qVq−1(τ, α) + (q + 2)Uq+1(τ, α) + τ (q + 1)Uq(τ, α) +

(
τ 2

4
− E

)
qUq−1(τ, α)

+ c−(τ, α)Wq(τ, α) + b−(τ, α)Wq+1(τ, α) + g−(τ, α)Wq+2(τ, α) = 0. (43)

Upon substituting for V and W , a recursive, linear finite difference equation of order 5
ensues for the U-moments. This takes on the form

5∑
j=−3

Cj (q; τ, α)Uq+j (τ, α) = 0 (44)

where

Cj(q; τ, α) ≡




(−q)(1 − q)(2 − q)

2
j = −3

0 j = −2

q(τ 2α4|+ − 4α2|+)
4

j = −1

τ

2
(1 + 2q)α4|− j = 0

2 + q +
α4|+q

2
− α4|−

(
3+ 5q

2 + q2

2

3 + q

)
− 1

2(q + 1)

(
α2|− − α4|−τ 2

4

)2

j = 1

α2|−α4|+(3 + 2q)τ(4 − α2|+τ 2)

8(q + 1)(q + 2)
j = 2

− (α4|+)2τ 2

2(q + 2)
− α2|−α4|−

8
(α2|+τ 2 − 4)

[
1

q + 1
+

1

(3 + q)

]
j = 3

− α8|−(5 + 2q)τ

2(2 + q)(3 + q)
j = 4

− (α4|−)2

2(3 + q)
j = 5.

(45)
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From the above moment equation relation, we can solve for Uq+5 in terms of the lower
order moments. This then requires that the {U0(τ, α), . . . , U4(τ, α)} missing moments be
specified before all the other moments can be generated through the linear relation

Uq(τ, α) =
4∑

�=0

Mq,�(τ, α)U�(τ, α) (46)

where the M-coefficients are readily generated, since they satisfy the previous moment equation
with respect to the q-index, in addition to the initialization conditions:

M�1,�2 = δ�1,�2 for 0 � � � ms ≡ 4. (47)

Since the W are known in terms of the missing moments/scalets, we can generate the
necessary coupled scalet equations in the τ and α directions (as given in equations (11) and
(15)), respectively:

∂τ




U0(τ, α)

U1(τ, α)

U2(τ, α)

U3(τ, α)

U4(τ, α)




=




N0,0(τ, α),N0,1(τ, α),N0,2(τ, α),N0,3(τ, α),N0,4(τ, α)

N1,0(τ, α),N1,1(τ, α),N1,2(τ, α),N1,3(τ, α),N1,4(τ, α)

N2,0(τ, α),N2,1(τ, α),N2,2(τ, α),N2,3(τ, α),N2,4(τ, α)

N3,0(τ, α),N3,1(τ, α),N3,2(τ, α),N3,3(τ, α),N3,4(τ, α)

N4,0(τ, α),N4,1(τ, α),N4,2(τ, α),N4,3(τ, α),N4,4(τ, α)






U0(τ, α)

U1(τ, α)

U2(τ, α)

U3(τ, α)

U4(τ, α)


 (48)

for α2 �= 1, and

∂α




U0(τ, α)

U1(τ, α)

U2(τ, α)

U3(τ, α)

U4(τ, α)




=




M0,0(τ, α),M0,1(τ, α),M0,2(τ, α),M0,3(τ, α),M0,4(τ, α)

M1,0(τ, α),M1,1(τ, α),M1,2(τ, α),M1,3(τ, α),M1,4(τ, α)

M2,0(τ, α),M2,1(τ, α),M2,2(τ, α),M2,3(τ, α),M2,4(τ, α)

M3,0(τ, α),M3,1(τ, α),M3,2(τ, α),M3,3(τ, α),M3,4(τ, α)

M4,0(τ, α),M4,1(τ, α),M4,2(τ, α),M4,3(τ, α),M4,4(τ, α)






U0(τ, α)

U1(τ, α)

U2(τ, α)

U3(τ, α)

U4(τ, α)


 . (49)

The explicit forms for these matrix coefficients, even in the present case, are very complicated.
We do not detail them here.

It is important to note that for α = 1, the form of the scalet equation simplifies
considerably. Included in this is a reduction in the number of missing moments. Thus,
for α = 1, we have

Cj(q; τ, 1) =




−p(2−3p+p2)

2 j = −3
0 j = −2

−p
(
2 − τ 2

2

)
j = −1

0 j = 0
2(p + 1) j = 1
0 j = 2

− 2τ 2

2+p
j = 3.

(50)
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The associated τ -scalet equation is

∂τ

(
U0(τ, 1)

U1(τ, 1)

U2(τ, 1)

)
=

 0, 0,−τ

0,− 1
τ
, 0

1
τ

− τ
4 , 0,− 2

τ



(

U0(τ, 1)

U1(τ, 1)

U2(τ, 1)

)
. (51)

It will be noted that this equation, despite the singular matrix elements, is satisfied by the
regular functions

U0(τ, 1)

U1(τ, 1)

U2(τ, 1)


 = √

π e− τ2

4

( 1
0
1
2

)
(52)

which follows from equation (36). Combining equations (44) and (50) allows us to generate
U3(τ, 1) and U4(τ, 1) as required for implementing our wavefunction recovery program.

4. Singularities in the α space

For simplicity, assume that the physical wavefunction behaves as �(x) ≈ e−P (x), where P(x)

is some function which generates a decaying wavefunction, at infinity, along the real axis.
The scalet moments, (Uq(τ, α))∗, should then be analytic in α, with singularities wherever
limx→±∞ Real

(
P ∗(α(x − τ

2

))
+ P

(
x + τ

2

))
< 0. If cxd is the highest degree term in P, then

this becomes Re(c∗α∗d + c) < 0.
For the V (x) = −ix3 case to be considered in the next section, from WKB theory

(Bender and Orszag 1978), we have that P(x) = ± 2
5 (−i)

1
2 |x| 5

2 , depending on x → ±∞.

The singularity condition becomes i
1
2 (α∗)

5
2 + (−i)

1
2 = 0, or (α∗)

5
2 = ±i. Since our coupled

differential scalet equations are algebraic in structure (i.e. no explicit fractional powers are
possible in the generated coefficients), these singularities in α must appear in the form
α5 = −1, or 1 + α5 = 0. Thus, the scalet equations to be derived involve no singular
coefficients within the physical regime for the inverse scale variable (i.e. α > 0).

For the harmonic oscillator case, d = 2 and c = 1 yield the singularity condition
1 + α∗2 = 0. Accordingly, α2 = −1, and one expects that because of similar ‘algebraic’
reasons, as explained above, the coupled differential scalet equations will involve coefficients
with singularities at α4 = 1. Clearly then, eventhough the physical scalet configurations are
not singular at α = 1, the scalet equation coefficients do become singular there. To deal with
this complication, numerically, we must simply perform a power series expansion, in α − 1,
at α = 1, followed by numerical (Runge–Kutta) integration.

Fortunately, the −ix3 potential’s analysis, as discussed in the next section, can be done
through numerical integration, starting at α = 1. In this regard, it is simpler to implement,
numerically, than that for conventional (real) anharmonic potentials.

5. The V(X) = −IX3 potential

We examine the previous formalism within a specific context. Consider the non-Hermitian
potential problem, V (x) = −ix3, which has received much recent attention. For this case, we
will work directly with equations (30)–(32); also

V±(x) = −E(1 ± α2) −
(

iτ 3

8
+

3iτ

2
x2

)
(1 ± α5) −

(
3iτ 2

4
x + ix3

)
(1 ∓ α5). (53)
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Define the moments


Uq(τ, α)

Vq(τ, α)

Wq(τ, α)


 =



∫ +∞
−∞ dx xqS(x, τ, α)∫ +∞
−∞ dx xqP (x, τ, α)∫ +∞
−∞ dx xqJ (x, τ, α)


 . (54)

Assuming that one is working with the physical, bounded, solutions, applying xq to both
sides of equations (30)–(32), and integrating by parts, yields the following coupled moment
equations.

From equation (30), we obtain

Vq(τ, α) =
3∑

j=−2

�1,j (q, τ, α)Uq+j (τ, α) (55)

where the �-coefficients are given in the appendix.
From equation (31), we obtain

3∑
j=0

�j(τ, α)Uj (τ, α) = 0 (56)

and

Wq(τ, α) =
4∑

j=−1

�2,j (q, τ, α)Uq+j (τ, α) (57)

for q � 0. The coefficients are given in the appendix.
Finally, from equation (32) we obtain

qVq−1(τ, α) +
2∑

j=−1

�3,j (q, τ, α)Uq+j (τ, α) +
3∑

j=0


j (α, τ )Wq+j (τ, α) = 0. (58)

For clarity, the E dependence of the �,� and 
 coefficients is implicitly assumed. These
coefficients are given in the appendix.

We can now substitute the relations in equations (55) and (57) into equation (58), to obtain

Uq+7(τ, α) =
6∑

j=−3

ϒq,j (τ, α,E)Uq+j (τ, α) (59)

for q � 0. The specific form of this equation is discussed in the appendix. We do not have to
generate the ϒ explicitly, in order to implement the rest of the formalism.

From the previous equation, one observes that all the Uq-scalets can be expressed as linear
combinations of the first seven {U�(τ, α)|0 � � � 6}, through the relation (as symbolized in
equation (6))

Uq(τ, α) =
6∑

�=0

Mq,�(τ, α,E)U�(τ, α) (60)

where the Mq,�(τ, α,E) satisfy the moment equation in equation (59), with respect to the
q-index,

Mq+7,�(τ, α,E) =
6∑

j=−3

ϒq,j (τ, α,E)Mq+j,�(τ, α,E) 0 � � � 6 (61)
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and also the initialization conditions

M�1,�2 = δ�1,�2 0 � �1,2 � 6. (62)

There is an additional constraint on the U from equation (56). Although we could
incorporate this, it would complicate the notation. It is not necessary for recovering the
wavefunction, since we can derive a closed set of differential scalet equations. This is
discussed in the next section.

5.1. The scalet equations

The Wq(τ, α) are linearly determined by the basic scalet configurations. This follows from
combining equations (57) and (60):

Wq(τ, α) =
6∑

�=0

Nq,�(τ, α,E)U�(τ, α) (63)

where

Nq,�(τ, α,E) =
4∑

j=−1

�2,j (q, τ, α)Mq+j,�(τ, α,E). (64)

Both equations (11) and (15) reduce to coupled, finite-dimensional, first-order differential
equations in the τ and α directions (i.e. the scalet equations), respectively (i.e. restrict the
q-index on the LHS of these equations to the basic scalet configuration indices):

∂τU�(τ, 1) =
6∑

�v=0

(
�

2
M�−1,�v

(τ, 1, E) + N�,�v
(τ, 1, E)

)
U�v

(τ, 1) (65)

and

−α∂αU�(τ, α) =
6∑

�v=0

(
(� + 1)M�,�v

(τ, α,E) − �τ

2
M�−1,�v

(τ, α,E)

+ N�+1,�v
(τ, α,E) − τ

2
N�,�v

(τ, α,E)

)
U�v

(τ, α) (66)

for 0 � � � 6.

5.2. Numerical implementation

5.2.1. Solving for the initial configurations at τ = 0, α = 1. The {U�(τ = 0, α = 1)|0 �
� � 6} moments, and the corresponding bound state energy, E, are determined through the
eigenvalue moment method (EMM), as discussed in the recent work by Handy (2001). We
provide a brief overview here.

The physical bound state solution, |�(x)|2 = S(x, 0, 1), must be integrable and
nonnegative. Therefore, it must satisfy the moment problem constraints:

∫ +∞

−∞


 Q∑

q=0

Cqx
q




2

|�(x)|2 > 0 (67)

for arbitrary Q � 0, and arbitrary C (other than the zero vector). This becomes the quadratic
form expression

Q∑
q1,q2=0

Cq1Uq1+q2(0, 1)Cq2 � 0. (68)
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Table 1. (EMM) Ground state energy and missing momentsa, U�(0, 1), for −ix3 potential.

Egr 1.156 267 072
U0(0, 1) 0.244 411 8149
U1(0, 1) 0
U2(0, 1) 0.126 609 0790
U3(0, 1) 0
U4(0, 1) 0.187 019 7824
U5(0, 1) 0
U6(0, 1) 0.441 959 3237

a Adopted EMM normalization:
∑6

�=0 U�(0, 1) = 1.

It is implicitly assumed that |�(x)|2 satisfies some normalization condition. One
convenient choice is

6∑
�=0

U�(0, 1) = 1. (69)

Constraining (for instance) U0(0, 1) = 1 − ∑6
�=1 U�(0, 1), and substituting in equation (60)

we get

Uq(0, 1) = M̂q,0(E) +
6∑

�=1

M̂q,�(E)U�(0, 1) (70)

where

M̂q,0(E) = Mq,0(0, 1, E) (71)

and

M̂q,�(E) = Mq,�(0, 1, E) − Mq,0(0, 1, E) (72)

for 1 � � � 6.
In terms of the unconstrained U, equation (68) becomes

5∑
�=1

AQ;�[C; E]U�(0, 1) < BQ[C; E] (73)

where

AQ;�[C; E] = −
Q∑

q1,q2=0

Cq1M̂q1+q2,�(E)Cq2 (74)

for 1 � � � 5, and

BQ[C; E] =
Q∑

q1,q2=0

Cq1M̂q1+q2,0(E)Cq2 . (75)

These relations can be solved for the physical energy and {U�(0, 1)} through EMM.
These in turn can be used as the initial conditions in integrating equation (65), for arbitrary τ .
Finally, knowledge of {U�(τ, 1)} becomes the initial conditions in integrating equation (66)
either in the zero scale limit (α : 1 → ∞) or in the large scale limit (α : 1 → 0). From
equations (9)–(10), these asymptotic limits generate either the wavefunction, � , or its power
moments (up to a factor in each case), respectively.
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Figure 1. Generation of �(x) for the ground state of the −ix3 potential using the scalet-Wigner
(accelerated) analysis for q = 0, 1 as given in equation (9); the MRF analysis of Tymczak et al
(1998); and Runge–Kutta integration.

Table 2. Missing moment ratios from scalet-Wigner and MRF analysis.

q Scalet-Wignera µq

µ0
MRF µq

µ0

0 (1.0, 0.0) (1.0, 0.0)

1 (0.0, 0.659 078 862) (0.0, 0.659 080 091)

2 (0.217 192 566, 0.0) (0.217 192 69, 0.0)

3 (0.0, 1.156 266 23) (0.0, 1.156 267 62)

4 (−0.762 072 626, 0.0) (−0.762 072 968, 0.0)

5 (0.0, 2.251 137 14) (0.0, 2.251 132 88)

6 (−5.291 441 54, 0.0) (−5.291 435 35, 0.0)

a Nc = 7, from equation (76), and α = O(8).

For the PT -invariant ground state solution, EMM gives the energy bounds
1.156 267 071 853 13 < Egr < 1.156 267 072 054 77, by working with Q = 80 (however,
the results in table 2 correspond to Q = 60). Similar bounds can be generated for the missing
moments {U�(0, 1)|0 � � � 6}; however, in table 1 we only quote the first ten significant
digits for the energy and missing moments. Using these values, we then integrate equation (48)
in the τ direction, and subsequently equation (49) in the α direction in order to recover the
wavefunction and/or moments. The wavefunction is given in figure 1 (calculated through
four different methods, as itemized below). The convergence behaviours of the scalet-Wigner
approximants, at particular points on the x-axis, are given in figures 2–8.

5.2.2. Summary of results. We note that, in agreement with the analysis previously given
pertaining to the singularity structure in the α-plane, an examination of the ϒ-coefficients
in equation (61), as explained in the appendix, reveals that the scalet equations will have a
(1 + α5)−m singularity (i.e. from equation (A6), and the required division by �2,4 and 
3,
both of which are specified in equations (A1) and (A3), respectively). Thus, the closest
singularities to the α-real axis are αpole = ei π

5 and its complex conjugate. These should not
pose any problems for the numerical integration of the scalet equation.

In figure 1, we compare the scalet-Wigner generated wavefunction (normalized to unity
at the origin), as given by equation (9) for q = 0, 1, with those obtained by two other methods.
The first is the multiscale reference function (MRF) analysis, first presented in the works
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Figure 2. Behaviour of the scalet-Wigner results for the first three moments of � , normalized
according to µ0 = 1. The accelerated results are depicted in terms of the solid, continuous curves.

Figure 3. Scalet-Wigner results for the real and imaginary parts of �(τ=0.5)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

by Tymczak et al (1998a, 1998b), and subsequently used in various other cases, particularly
in the −ix3 + iαx complex potential case (Handy et al 2001). The numerical results of this
approach were confirmed by Runge–Kutta integration, utilizing the approximate form for the
wavefunction derivative, at the origin, as given by the MRF approach. All four cases agree very
well (i.e. scalet-Wigner (q = 0, 1), MRF and Runge–Kutta). We only give the scalet-Wigner
results up to x � 3. The MRF results are very small, for x > 3, and appear as dots very close
to the x-axis. The Runge–Kutta integration becomes unstable, at relatively large x, as shown
in figure 1.

We remind the reader that the quantization performed at scale value a = 1 adopts
a particular normalization for |�(x)|2 which cannot easily be represented in terms of � .
Furthermore, the asymptotic relations in equation (9) do not allow us to determine �(0). The
best we can do is generate �(τ)

�(0)
, and similarly for the ratios of the moments of �: µq

µ0
. As such,
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Figure 4. Scalet-Wigner results for the real and imaginary parts of �(τ=1.0)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

Figure 5. Scalet-Wigner results for the real and imaginary parts of �(τ=1.5)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

the (complex) wavefunction given in figure 1 is set to unity at the origin. The same is done in
figure 2.

The convergence rate of the scalet-Wigner formalism can be slow, particularly for the
−ix3 problem. To improve this, we adopted a convergence acceleration technique, first
used in the scalet–wavelet work of Handy and Murenzi (1996, 1997, 1998, 1999). This
involves representing the large α values of the scalet-Wigner integrated results in terms
of the corresponding asymptotic form expression, for small scale values, and extracting
the theoretical limiting form for the wavefunction. This approach significantly speeds up
the convergence rate. It is this approach which is used in all the figures. This is particularly the
case in figire 2. We give the scalet-Wigner approximants, as functions of α, for the first three
(normalized) moments of the wavefunction: µq

µ0
, q = 0, 1, 2. These correspond to the broken

curves in figure 2. For each of these, the corresponding accelerated result is represented by
a continuous, unbroken, curve. In table 2 we compare the scalet-Wigner generated moment
ratios with those derived from the MRF method.
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Figure 6. Scalet-Wigner results for the real and imaginary parts of �(τ=2.0)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

Figure 7. Scalet-Wigner results for the real and imaginary parts of �(τ=2.5)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

We detail the form of the accelerated sequence analysis. The integrated scalet-Wigner
moment is evaluated at arbitrarily large values of the inverse scale, αj � 1, and this is equated
to a truncated asymptotic expansion for small scale values

(
αj ≡ 1

aj

)
:

 αj
Uq(τ,αj )(

τ
2

)q if τ �= 0

α
1+q

j Uq(0, αj ) if τ = 0


 =

Nc∑
n=0

A(q)
n (τ )an

j . (76)

Upon picking Nc + 1 different αj values, at which the qth scalet-Wigner configuration is
determined (through numerical integration of the α-scalet equation), one can solve for the
Nc + 1 coefficients, A

(q)
n (τ ), of which the A

(q)

0 (τ ) coefficient approximates the desired
asymptotic limit, as given in equation (9). Accordingly, we obtain

A
(q)

0 (τ ) =
{
µ∗

0�(τ) if τ �= 0
µ∗

q�(0) if τ = 0.
(77)

All the accelerated results depicted in the figures correspond to Nc = 7. In figures 3–8 we
give the scalet-Wigner results for the wavefunction ratio, �(τ)

�(0)
, for different τ values. For both
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Figure 8. Scalet-Wigner results for the real and imaginary parts of �(τ=3.0)
�(0)

(broken curves) and
their accelerated counterparts (solid curves).

the real and imaginary parts of the wavefunctions, three distinct scalet-Wigner approximants
are shown (i.e. q = 0, 1, 2 from equation (9)). These correspond to broken curves. For each
of these, there will be a corresponding accelerated sequence. These are depicted by a solid,
continuous curve. The three such curves for the real part of the wavefunction, as well as the
three curves for the imaginary part, converge to their corresponding limit, quickly, as noted in
the figures. These values correspond to the values given in figure 1 for the real and imaginary
parts of the wavefunction. At (relatively) large α values, the accelerated curves manifest
numerical instability. We show this, whereever possible.

The extension of the previous analysis to the much more difficult case of complex
eigenenergies for PT-symmetry breaking systems, as first discussed by Delabaere and Trinh
(2000), and subsequently studied by Handy et al (2001) through moment problem quantization
methods, is presented elsewhere (Handy 2001c).
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Appendix

The various coefficients required in the preceding analysis are given below.

�1,j (q, τ, α) =




q(q−1)

2 j = −2

0 j = −1
1
2

(
E + Eα2 + iτ 3

8 (1 + α5)
)

j = 0
3i
8 τ 2(1 − α5) j = 1
3i
4 τ (1 + α5) j = 2
i
2 (1 − α5) j = 3

(A1)
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�j(τ, α) =




(
E − Eα2 + iτ 3

8 (1 − α5)
)

j = 0
3i
4 τ 2(1 + α5) j = 1
3i
2 τ (1 − α5) j = 2

i(1 + α5) j = 3

(A2)

�2,j (q, τ, α) =




− q

2 j = −1

0 j = 0
1

2(q+1)

(
E(1 − α2) + iτ 3

8 (1 − α5)
)

j = 1

3iτ 2(1+α5)

8(q+1)
j = 2

3iτ(1−α5)

4(q+1)
j = 3

i(1+α5)

2(q+1)
j = 4

(A3)

�3,j (q, τ, α) =




(
E + iτ 3

8

)
q j = −1

3i
4 τ 2(q + 1) j = 0
3i
2 (q + 2)τ j = 1

i(q + 3) j = 2

(A4)

and


j(τ, α) =




(
E(1 − α2) + iτ 3

8 (1 − α5)
)

j = 0
3i
4 τ 2(1 + α5) j = 1
3i
2 τ (1 − α5) j = 2

i(1 + α5) j = 3.

(A5)

With regard to equation (41), we note that upon substituting equations (37) and (39) in
equation (40), we obtain the expression

q

3∑
j=−2

�1,j (q − 1, τ, α)Uq−1+j (τ, α) +
2∑

j=−1

�3,j (q, τ, α)Uq+j (τ, α)

+
3∑

j1=0


j1(τ, α)


 4∑

j2=−1

�2,j2(q + j1, τ, α)Uq+j1+j2(τ, α)


 = 0. (A6)

From this relation, the highest order moment is easily isolated, yielding

−
3(τ, α)�2,4(q + 3, τ, α)Uq+7(τ, α) = q

3∑
j=−2

�1,j (q − 1, τ, α)Uq−1+j (τ, α)

+
2∑

j=−1

�3,j (q, τ, α)Uq+j (τ, α) +
3∑

j1=0


j1(τ, α)

×

 3∑

j2=−1

�2,j2(q + j1, τ, α)Uq+j1 +j2(τ, α)




+
2∑

j1=0


j1(τ, α)�2,4(q + j1, τ, α)Uq+j1 +4(τ, α). (A7)
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We can generate the M-coefficients in equation (43) from the related expression:

−
3(τ, α)�2,4(q + 3, τ, α)Mq+7,�(τ, α) = q

3∑
j=−2

�1,j (q − 1, τ, α)Mq−1+j,�(τ, α)

+
2∑

j=−1

�3,j (q, τ, α)Mq+j,�(τ, α) +
3∑

j1=0


j1(τ, α)

×

 3∑

j2=−1

�2,j2(q + j1, τ, α)Mq+j1 +j2,�(τ, α)




+
2∑

j1=0


j1(τ, α)�2,4(q + j1, τ, α)Mq+j1 +4,�(τ, α). (A8)

If one expands the above, and regroups the appropriate terms, one can define the ϒ

representation in equation (41). However, this approach is cumbersome, and unnecessary, in
order to generate the desired M coefficients.
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